PDS Lab Assignment - 2 07.08.2018

Instructions:

Create a sub directory named as Lab2.

Give the name of the programs as _1.c, _2.c, .. etc. for the problem 1, 2....., respectively. Here implies the part number. For example, Part-A

Store all the programs under this Assignment in the directory Lab2.

Zip the entire directory **Lab2** and rename it as **<R>_Lab2_tar.gz**. where **<R>** denotes your Roll No. You should upload your zipped file to the Moodle course web page latest by 11:55 hrs.

Part-A

1. Edit the following program using edit.

2. Acceleration due to gravity of a celestial object of mass M and radius R is given by

$$g = G \frac{M}{R^2}$$

Calculate the values of g's for the earth and moon, given that

Mass of the earth = 5.972×10^{24} kg Radius of the earth = 6361 km Mass of the moon = 7.35×10^{22} kg Radius of the moon = 1737 km

Assume the value of Newton's constant G as $6.67408 \times 10^{-11} \text{ m}^3 \cdot \text{kg}^{-1} \cdot \text{s}^{-2}$

[You should read the values of the above from the keyboard.]

3. Let the variables in the code be defined as: int a = 5; int b = -3; int c = 0.

Which of the following conditions evaluates to true in the 'C' programming language?

- i. (a < b) || (c < b)
- ii. (c < a) && (c < b)
- iii. (a > b) && !c
- iv. !(a+b>c)

Write a C-program and check your results.

Part-B

4. Find the sum of the following series (You should not use any loop).

$$S = 1 - \frac{1}{2} + \frac{1}{2^2} - \frac{1}{2^3} + \dots + (-1)^n \frac{1}{2^n}$$

What will be the value of S for a large value of n, say $n \to \infty$.

5. Evaluate the expression of T_p ,

$$T_p = T_s \sqrt{\frac{R_s \sqrt{\frac{1-\alpha}{\sigma}}}{2D}}$$

where α = 0.306, Ts = 6.96 × 10⁸ m, Rs = 6.96 × 10⁸ m, D = 1.496 × 10¹¹ m and σ = 1.2.

Part-C

6. A ball is released from a height of h meters. Each time it bounces on the floor, its velocity becomes halved. Write a program, which reads the value of h and then prints the total distance traversed by the ball when it touches the ground for the n-th time. Assume that the value of acceleration due to gravity, g is 9.8 m/sec².

Hint: Express the distance travelled after n-th collisions.

Submission instruction

Zip your Lab2 directory. Upload your zip file into the Moodle server.